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ABSTRACT

The Support Vector Machine (SVM) is a powerful tool for

classification. We generalize SVM to work with data objects

that are naturally understood to be lying on curved manifolds,

and not in the usual d-dimensional Euclidean space. Such

data arise from medial representations (m-reps) in medical

images, Diffusion Tensor-MRI (DT-MRI), diffeomorphisms,

etc. Considering such data objects to be embedded in higher

dimensional Euclidean space results in invalid projections (on

the separating direction) while Kernel Embedding does not

provide a natural separating direction. We use geodesic dis-

tances, defined on the manifold to formulate our methodol-

ogy. This approach addresses the important issue of analyzing

the change that accompanies the difference between groups

by implicitly defining the notions of separating surface and

separating direction on the manifold. The methods are ap-

plied in shape analysis with target data being m-reps of 3 di-

mensional medical images.

Index Terms— Image classification, Image shape analy-

sis.

1. INTRODUCTION

Classification plays an important role in statistical shape anal-

ysis [1, 2, 3] of medical images. For example, brain disorders

like Alzheimer’s and schizophrenia are often accompanied by

structural changes. By detecting these changes, classification

help in understanding differences between populations.

Classification methods like Fisher Linear Discrimination

(FLD) [4], Support Vector Machines [5, 6] and Distance

Weighted Discrimination (DWD) [7] were designed for data

which are vectors in Euclidean space and do not deal ex-

tensively with data which are parameterized by elements in

curved manifolds. See [8] and [9] for an overview of com-

mon existing classification methods. Examples of data on

manifold include m-reps [10, 11] and DT-MRIs [12].

SVM has been widely used in image analysis since it han-

dles the issue of High Dimension Low Sample Size (HDLSS)

reasonably well. Kernel Embedding [13] is another approach

where the data are mapped to a higher dimensional feature

space and the above mentioned Euclidean methods are ap-

plied. SVM is known to be widely used along with Kernel

Embedding. The drawback of this method is that the results

are not interpretable since it does not provide a natural direc-

tion of separation. This issue is addressed here by generaliz-

ing SVM which naturally handles data on curved manifolds.

The notion of separating hyperplane, fundamental to

many Euclidean classifiers, is intractable to explicitly com-

pute when generalized to arbitrary manifolds. The approach

adopted here is to find control points on the manifold, which

represent the different classes of data, and then define the

classifier as a function of the distances (geodesic distances on

the manifold) of individual points from the control points (see

section 2). We thus bypass the problem of explicitly finding

separating boundaries on the manifold. In 2.3.1, a choice of

the control points is proposed which generalizes the SVM

criterion for manifolds.

This approach will enable us not only to use the method

on our motivating example of m-rep data, but it is also ap-

plicable for DT-MRI, and several other sciences like human

movement, mechanical engineering, robotics, computer vi-

sion and molecular biology where non-Euclidean data often

appear.

1.1. M-reps as Shape Descriptor

The medial representation is based on the medial axis of Blum

[14]. There is a medial manifold sampled over an approxi-

mately regular lattice, the elements of which are called medial
atoms. When a medial figure consists of n medial atoms, its

parameters are naturally understood to be lying in the carte-

sian product manifold {�3 ×�+ × S2 × S2}n [15, 16].

Fig. 1. Medial atom with a cross section of the boundary

surface it implies (left). An m-rep model of a hippocampus

and its boundary surface (right).
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2. METHODS

Here we extend the ideas of separating hyperplane and sepa-

rating direction (which are the foundations of many Euclidean

classification methods such as Mean Difference, FLD, SVM

and DWD) to data lying on a manifold. Our solution is based

on the idea of control points (and the geodesic distance of

data from these control points), as described in the following

section.

2.1. Control Points and The General Classification Rule

We think about control points as being representatives of the

two classes. If we name the control points as c1 and c2, then

the proposed classification rule fc1,c2(x) is given by

fc1,c2(x) = d2(c2, x) − d2(c1, x), (1)

where c1, c2, and x ∈ M and d(·, ·) is the geodesic distance

metric defined on the manifold M. This rule assigns a new

point x to class 1 if it is closer to c1 than c2, and to class 2

otherwise.

2.2. The Implied Separating Surface and Direction of
Separation

The zero level set of fc1,c2(·) is the analog of the separating

hyperplane, while the geodesic joining c1 and c2 is the analog

of the direction of separation. Thus, the separating surface is

the set of points which is equidistant from c1 and c2. If we

denote the separating surface by H(c1, c2), we can write,

H(c1, c2) = {x ∈ M : fc1,c2(x) = 0} (2)

= {x ∈ M : d2(c1, x) = d2(c2, x)} (3)

In d dimensional Euclidean space, H(c1, c2) is a hyper-

plane of dimension d− 1 that is the perpendicular bisector of

the line segment joining c1 and c2. Note that the Mean Differ-

ence method is a particular case of this rule, where the control

points are the means of the respective classes.

2.3. Choice of Control Points

Having set the framework for the general decision rule for

manifolds the critical issue now is the choice of control points.

For example, Fig. 2 shows that for the given set of data,

the control points corresponding to the red solid separating

boundary do a better job of classification than the pair cor-

responding to the black dotted boundary. So, the key to the

construction of a good classification rule is to find the right

pair of control points.

2.3.1. The Manifold SVM (MSVM) method

MSVM determines a pair of control points that maximizes

the mimimum distance to the separating boundary. While

Fig. 2. Two pairs of control points showing their respective

separating boundary and separating direction on the surface of

the sphere. Different colors (with symbols) represent classes.

The solid red surface (great circle) separates the data better

than the dotted black surface.

the SVM criterion has many interpretations, it is the max-

imum margin idea that generalizes most naturally to man-

ifolds where some Euclidean notions such as distance are

much more readily available than others (e.g., inner product).

MSVM appears to be the first approach where all calculations

are done on the manifold. As in the classical SVM literature,

yi denotes the class label taking values -1 and 1.

The zero level set of the function fc1,c2(·) (defined in (1))

defines the separating boundary H(c1, c2) for a given pair

(c1, c2). Also, let X̂(c1,c2) denote the set (to handle possible

ties) of training points which are nearest to H(c1, c2).
We would like to solve for some c̃1 and c̃2 such that

(c̃1, c̃2) = arg maxc1,c2
min

i=1...n
d(xi,H(c1, c2)) (4)

In other words, we want to maximize the minimum distance

of the training points from the separating boundary.

It is important to note that the solution of (c̃1, c̃2) in (4) is

not unique. In fact, in the d dimensional Euclidean case there

is a d− 1 dimensional space of solutions. Therefore, in order

to make the search space for (c̃1, c̃2) smaller we propose to

find (c̃1, c̃2) as

(c̃1, c̃2) = arg max(c1,c2)∈Ck
min

i=1...n
d(xi,H(c1, c2)) (5)

where, for a given k > 0,

Ck = {(c1, c2) : ŷc1,c2fc1,c2(x̂(c1,c2)) = k} (6)

and,
x̂(c1,c2) = arg minx∈ ̂X(c1,c2)

fc1,c2(x) (7)

and ŷc1,c2 is the class label of x̂(c1,c2).

In Euclidean space, note that the distance of any point x
from the separating boundary H(c1, c2) is

d(x,H(c1, c2)) =
∣∣∣∣ fc1,c2(x)
2d(c1, c2)

∣∣∣∣ (8)
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Therefore, using (5) - (8), and the fact x̂(c1,c2) is one of the

training points closest to H(c1, c2), the optimization problem

can be recast as the following penalized minimization prob-

lem:

Minimize
gλ(c1, c2) = d2(c1, c2) +

λ

n

n∑
i=1

(hi)+ (9)

where λ is the penalty for violating the constraints given by

hi = k − yi{d2(xi, c2) − d2(xi, c1)}.

2.3.2. Tuning Parameter λ

Note that the second term in (9) not only penalizes misclassi-

fication, but also penalizes cases where training points come

too close to the separating boundary. The parameter λ is

called the tuning parameter. For large λ, the training error

(proportion of misclassified training data) tends to decrease.

But increasing λ indiscriminately tends to result in overfitting.

This tradeoff is reflected by the cross-validation error (pro-

portion of misclassified test data), which initially decreases,

but increases when λ becomes large enough that the error is

driven by overfitting. A sensible choice of λ is one which has

low value of the cross-validation error.

3. RESULTS

In this section, we compare the performance of MSVM with

two other methods. Method (a) is Euclidean SVM on a single

tangent plane (with the overall geodesic mean as base point).

We will call this method TSVM. Method (b) is called Geodesic

Mean Difference (GMD), attained by choosing the control

points as the geodesic means of the respective classes.

In our experiment, several values of the tuning parameter

λ (λ = 15k, k = 0, . . . 7) are considered for each of MSVM

and TSVM. The choice of the base 15 for λ is not set in stone:

we choose it as a reasonable compromise between coverage

of a large range for λ and the number of grid points.

3.1. Application To Hippocampi Data

This data consists of 82 m-rep models (of Hippocampi), 56 of

which are from schizophrenic individuals and the remaining

26 are from healthy control individuals (see [17]). Each of

these models has 24 medial atoms, placed in a 8 × 3 lattice

(see Fig.1).

3.1.1. Training Error and Cross Validation Error

We conduct the simulation study in the following way. For

each run we randomly remove five data points from the pop-

ulation of 82 and train our classifiers (for each λ) on the re-

maining 77 data points and test on the remaining five. Aggre-

gating over several simulated replications, the training error

and the cross-validation error are calculated.

Fig. 3 shows the performance (training error (left panel)

and cross-validation error(left panel)) of the different meth-

ods.
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Fig. 3. Left: Training Errors against cost log15 λ. Right:

Cross-validation Errors against cost log15 λ. Cross-validation

error for MSVM is robust to the choice of λ.

From Fig. 3, we see that MSVM (λ = 1) has train-

ing error either very close to GMD or substantially smaller.

On the other hand, for small values of λ the training error of

TSVM is much higher. MSVM fails to attain a training error

of zero while TSVM acheive zero training error (at λ = 155

or higher). But this could be due to overfitting by TSVM, and

this idea is validated by the increased cross-validation error

for high λ values.

We note that the cross-validation error TSVM is sensi-

tive to the choice of λ, i.e., a good choice of λ appears to be

critical. In contrast, MSVM is much more robust against the

choice of λ. In particular, the fact that the cross-validation of

MSVM is much more stable for high values of λ is promising.

MSVM attains the minimum cross validation error of all the

methods at λ = 152.

3.1.2. Shape Change Between The Two Groups

In our context, the rule that best shows structural change in

the hippocampus is the most valuable. The structural change

captured by each method is shown in Figure 4. For each clas-

sification rule (at the λ which has the least cross-validation

error), we project the data points on to direction of separation.

The mean of the projected data is calculated. The projected

data points with the lowest and highest projection scores give

the extent of structural change captured by the separating di-

rection. The objects in the left are the projected shapes with

the highest score, and on the right, with the lowest score. The

colormap shows the surface distance maps of the mean (of

projected data points) and projected shapes.

Fig 4 shows that GMD represents a large structural

change. But its relevance is questionable because of its

poor discriminating performance (Fig. 3). GMD shows a

lot of structural change, but it fails to isolate the important
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Projected Model of Extreme Patient

GMD

Projected Model of Extreme Control

TSVM

MSVM

Fig. 4. Diagram showing the structural change captured by

the different methods. Red, green, and blue are inward dis-

tance, zero distance, and outward distance respectively.

features which actually separate the two groups. Among the

other methods, MSVM captures the change most strongly.

4. DISCUSSION

In this article we attempt to generalize SVM so that it can

handle data on manifolds. The method was applied to m-rep

models of hippocampi and compared with other approaches.

The results were encouraging. It seems that by virtue of work-

ing on the manifold (and not a tangent plane, like TSVM),

MSVM provides a good balance of classifying power and in-

formative separating direction. TSVM hardly captures any

change. This could be related to overfitting where the sep-

arating direction feels the microscopic noisy features of the

training data and thus fails to capture the relevant structural

changes.

One could argue for comparing the method with the “ap-

propriate” Kernel Embedding approach. It should be recalled

that such an approach will not produce interpretable pro-

jected m-reps (necessary to analyze the difference between

the groups) and thus we are not interested in them. The pos-

sibility of doing Euclidean SVM on multiple tangent planes

has not been explored here, but it can be an area of research.

We believe this is one of the first attempts to do classification

working on the manifold and preliminary results suggest that

this approach identifies a meaningful separating direction.
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